
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
(ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)

II B.Tech II Semester

Subject Name: DATABASE MANAGEMENT SYSTEMS LAB
Subject Code: C0519
Regulations: MR-22

Lab Manual

Academic Year: 2024-25

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)
MAIN CAMPUS

(An UGC Autonomous Institution, Approved by AICTE and Affiliated to JNTUH,
Hyderabad, Accredited by NAAC with ‘A++’ Grade (III Cycle))

NBA Accredited Programmes – UG (CE, EEE, ME, ECE, & CSE), PG (CE-SE, EEE, EPS, ME-TE)

Maisammaguda(H), Gundlapochampally Village, Medchal Mandal,
Medchal-Malkajgiri District, Telangana State – 500100

MALLA REDDY ENGINEERING COLLEGE (AUTONOMOUS)

MR22 – ACADEMIC REGULATIONS (CBCS)

for B.Tech. (REGULAR) DEGREE PROGRAMME

Applicable for the students of B.Tech. (Regular) programme admitted from the Academic

Year 2022-23 onwards

The B.Tech. Degree of Jawaharlal Nehru Technological University Hyderabad, Hyderabad

shall be conferred on candidates who are admitted to the programme and who fulfill all the

requirements for the award of the Degree.

VISION OF THE INSTITUTE

To be a premier center of professional education and research, offering quality programs in
a socio-economic and ethical ambience.

MISSION OF THE INSTITUTE

• To impart knowledge of advanced technologies using state-of-the-art infrastructural
facilities.

• To inculcate innovation and best practices in education, training and research.

• To meet changing socio-economic needs in an ethical ambience.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING –
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

DEPARTMENT VISION

To attain global standards in Computer Science and Engineering education, training and
research to meet the growing needs of the industry with socio-economic and ethical
considerations.

DEPARTMENT MISSION

• To impart quality education and research to undergraduate and postgraduate students
in Computer Science and Engineering.

• To encourage innovation and best practices in Computer Science and Engineering
utilizing state-of-the-art facilities.

• To develop entrepreneurial spirit and knowledge of emerging technologies based on
ethical values and social relevance.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Graduates will demonstrate technical skills, competency in AI & ML and exhibit team
management capability with proper communication in a job environment

PEO2: Graduates will function in their profession with social awareness and responsibility

PEO3: Graduates will interact with their peers in other disciplines in industry and society
and contribute to the economic growth of the country

PEO4: Graduates will be successful in pursuing higher studies in engineering or
management

PROGRAMME OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO2: Problem analysis: Identify, formulate, review research literature and analyze complex
engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems
and design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and
need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO1: Design and develop intelligent automated systems applying mathematical, analytical,
programming and operational skills to solve real world problems

PSO2: Apply machine learning techniques, software tools to conduct experiments, interpret
data and to solve complex problems

PSO3: Implement engineering solutions for the benefit of society by the use of AI and ML

BLOOM’S TAXONOMY (BT) TRIANGLE & BLOOM’S ACTION VERBS

BLOOM’S ACTION VERBS

2022-23
Onwards
(MR-22)

MALLA REDDY ENGINEERING COLLEGE
(AUTONOMOUS)

B.Tech.
VI Semester

Code: C0519
DATABASE MANAGEMENT SYSTEMS LAB

L T P

Credits: 1 - - 2

Course Objectives:

• Introduce ER data model, database design and normalization

• Learn SQL basics for data definition and data manipulation

Software Requirements: MySQL

LIST OF EXPERIMENTS:

1. Concept design with E-R Model
2. Relational Model
3. Normalization
4. Practicing DDL commands
5. Practicing DML commands
6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.) Nested,

Correlated subqueries
7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping

of Views.
8. Triggers (Creation of insert trigger, delete trigger, update trigger)
9. Procedures
10. Usage of Cursors

TEXT BOOKS:
Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw
Hill,3rd Edition
Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

REFERENCE BOOKS:

1. Database Systems design, Implementation, and Management, Peter Rob & Carlos
Coronel 7thEdition.

2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
3. Introduction to Database Systems, C.J. Date, Pearson Education
4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student

Edition

Course Outcomes:

• Design database schema for a given application and apply normalization

• Acquire skills in using SQL commands for data definition and data manipulation.

• Develop solutions for database applications using procedures, cursors and triggers

List of Experiments

1 Railway Reservation System -(Redesigning IRCTC database)

Train (train Number, name, source, destination, start_time, reach_time,
traveltime, distance, class, days, type)
Ticket (PNRNo, Transactionid, from_station, To_station, date_of_journey, class
date_of_booking, total_ticket_fare, train number)
Passenger (PNR No, Serial no, Name, Age, Reservation_status)

Train_Route(Train_No, route_no, station_code, name, arrival_time, depart_time,
distance, day)

Train_Ticket_fare(Train_No, class, base_fare, reservation_charge,

superfast_charge, other_charge, tatkal_charge, service_tax)

Create all the tables specified above. Make underlined columns as primary
key.(use number, number(m,n), varchar(n), date, time, timestamp data types
appropriately)
Insert atleast 5 rows to each table. (Check www.irctc.co.in website for actual data)

1. Use Interactive insertion for inserting rows to thetable.
2. Use ADT (varray) for class and days column in Traintable.

2 Write simple DDL/DML Queries to

1. Remove all the rows from Passenger tablepermanently.

2. Change the name of the Passenger table toPassenger_Details.

3. List all traindetails.
4. List all passengerdetails.

5. Give a list of trains in ascending order ofnumber.

6. List the senior citizen passengersdetails.
7. List the station names where code starts with'M'.
8. List the trains details within a range of numbers.

9. Change the super fast charge value in train fare as zero, if it isnull.

10. List the passenger names whose tickets are notconfirmed.
11. List the base_fare of all AC coaches available in
each train. Find the ticket details where transaction
id is notknown.
1) Use Interactive updation for updating the seat no for particular PNR NO.
2) Find the train names that are from Secunderabad to Mumbai, but do not
have the sourceor destination in itsname.
3) 3) Find the train details that are on Thursday (Use the ADT column
created).

http://www.irctc.co.in/

3 Create (Alter table to add constraint) the necessary foreign keys by identifying the

relationships in the table.

1) Add a suitable constraint to train table to always have train no in the range
10001 to 99999.

2) Add a suitable constraint for the column of station name, so that does not take
duplicates.

3) Change the data type of arrival time, depart time (date -> timestamp or
timestamp to date), and do the necessary process for updating the table with
new values.

4) Add a suitable constraint for the class column that it should take values only as
1A, 2A, 3A, SL, C.

5) Add a not null constraint for the column distance in train_route.

4 Use SQL PLUS functions to.

1. Find the passengers whose date of journey is one month from today.

2. Print the train names in upper case.

3. Print the passenger names with left padding character.

4. Print the station codes replacing K with M.

5. Translate all the LC in class column (Train_fare) to POT anddisplay.

6. Display the fare details of all trains, if any value is ZERO, print as NULL value.

7. Display the pnrno and transaction id, if transaction id is null, print 'not

generated'.

8. Print the date_of_jounrney in the format '27th November 2010'.

9. Find the maximum fare (total fare).

10. Find the average age of passengers in one ticket.

11. Find the maximum length of station name available in the database.

12. Print the fare amount of the passengers as rounded value.

13. Add the column halt time to train route.

14. Update values to it from arrival time and
depart time. High Level:
15. Update values to arrival time and depart time using conversion functions.

16. Display the arrival time, depart time in the format HH:MI (24 hours
andminutes).

5 Querying Aggregate Functions(COUNT,SUM,AVG,MAX and MIN)

Bus: Bus(BusNo: String, Source: String, Destination: String, CoachType: String)
Ticket: Ticket(TicketNo: string, DOJ: date, Address:string,ContactNo: string,
BusNo:String, SeatNo :Integer, Source: String, Destination: String)
Passenger: Passenger(PassportID: String, TicketNo:string,Name: String,
ContactNo:string,Age: integer, Sex: character, Address: String);
Reservation: Reservation(PNRNo: String, DOJ: Date, NoofSeats: integer ,
Address: String ,ContactNo: String, , BusNo: String,SeatNo:Integer)
Cancellation: Cancellation (PNRNo: String,DOJ: Date, SeatNo:

integer,ContactNo: String,Status: String)

1. Write a Query to display the information present in the passenger and
cancellation tables
 2. Display the number of days in a week on which the AP123 bus is available
3. Find number of tickets booked for each PNR_No using GROUP BY CLAUSE
4. Find the distinct PNR Numbers that are present.

6 Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT,

Constraints etc.)

1. Display unique PNR_NO of all passengers

 2. Display all the names of male passengers.

3. Display the ticket numbers and names of all the passengers.

4. Find the ticket numbers of the passengers whose name start with ‘r’ and ends

with ‘h’.

5. Find the names of Passengers whose age is between 30 and 45.

6. Display all the passengers names beginning with ‘A’.

7. Display the sorted list of Passengers names

7 Joins , Nested Queries & Views:

Create a table EMP with the following structure.

COLUMN Name DATA Type
--

EMPNO INTEGER(6)
ENAME VARCHAR2(20)
JOB VARCHAR2(10)
MGR INTEGER (4)
DEPTNO INTEGER (3)
SAL INTEGER (7)

2. Create dept table with the following structure.

COLUMN Name DATA Type

DEPTNO INTEGER (2)

DNAME VARCHAR2(10)

LOC VARCHAR2(10)

 DEPTNO as the primary key

1. Display all the employees and the departments implementing a left outer join.

2. Display the employee name and department name in which they are working
implementing a full outer join.

3. Find the third highest salary of an employee.

4. Display all employee names and salary whose salary is greater than minimum
salary of the company and job title starts with ‘M’.

5.Write a query to display information about employees who earn more than any
employee in dept 30.
6. Write a query to create and drop View

8 Write a simple PL/SQL block to.
1. Print the factorial of a given number.
2. Print the Fibonacci series

9 Write a cursor for the following.

1. Declare a cursor that defines a result set.

2. Open the cursor to establish the result set.

3. Fetch the data into local variables as needed from the cursor, one row at a time.

4. Close the cursor when done.

10 Write a PL/SQL procedure

1. For creation of stored procedure, Execution of procedure and modification of

procedure.

11 Write a Trigger for the following:

1. Creation of insert trigger, delete trigger, update trigger.

12 Use TCL commands for your transactions. (Commit, Rollback, Savepoint)

:TASK 1 :

Q.Railway Reservation System -(Redesigning IRCTC database)

 a: create a table containing the following data

Train (train Number, name, source, destination, start_time, reach_time, traveltime, distance,

class,days, type)

syntax:

create database dbmslab;

use dbmslab;

create table Train(trainno INT(6) PRIMARY KEY,name VARCHAR(20),source

VARCHAR(20),destination VARCHAR(20),start_time DATETIME,reach_time

DATETIME,traveltime TIME,distance FLOAT(6,2), class VARCHAR(10),days INT(2),type

VARCHAR(5));

Output:

 (b).create a table containing the following data

Ticket (PNRNo, Transactionid, from_station, To_station, date_of_journey, class

date_of_booking,

total_ticket_fare, train number)

syntax:

create table Ticket (PNRNO INT(10) PRIMARY KEY, transactionid INT(10), from_station

VARCHAR(20), to_station VARCHAR(20), date_of_journey DATETIME, class

VARCHAR(10), date_of_booking DATETIME, total_ticket_fare INT(5), trainno INT(6));

Output:

(c). create a table containing the following data

Passenger (PNR No, Serial no, Name, Age, Reservation_status)

syntax:

create table Passenger (PNRNo INT(10) primary key , Serialno INT(10), Name

VARCHAR(20), Age INT(3), Reservation_status VARCHAR(10));

Output:

(d). create a table containing the following data Train_Route(Train_No, route_no,

station_code, name, a

rrival_time, depart_time, distance, day)

syntax:

create table Train_Route(trainno INT(6) primary key, route_no INT(6), station_code

VARCHAR(5), name VARCHAR(20), arrival_time TIME, depart_time TIME, distance

FLOAT(6,2), day INT(2));

Output:

(e).create a table containing the following data

Train_Ticket_fare(Train_No, class, base_fare, reservation_charge, superfast_charge,

other_charge, tatkal_charge, service_tax)

syntax:

create table Train_Ticket_fare(trainno INT(6) primary key, class VARCHAR(10), base_fare

INT(4), reservation_charge INT(4), superfast_charge INT(4), other_charge INT(4),

tatkal_charge INT(4), service_tax INT(4);

Output:

Example for inserting the values into the table & how to show the data present in the table:

:TASK 2 :

Q.Write simple DDL/DML Queries to

1. Remove all the rows from Passenger table permanently.

syntax:

TRUNCATE TABLE passenger;

Output:

2. Change the name of the Passenger table to Passenger_Details.

syntax:

RENAME table passenger to passenger_Details;

Output:

3. List all train details.

syntax:

Select * from train ;

 Output:

4. List all passenger details.

Syntax:

Select * from passenger;

Output:

5. Give a list of trains in ascending order of number.

Syntax:

Select * from train order by trainno;

Output:

6. List the senior citizen passengers details.

Syntax:

Select * from passenger where age>=45;

Output:

7. List the station names where code starts with 'S'.

Syntax:

select name from train_route where station_code like "S%";

Output:

8. List the trains details within a range of numbers.

Syntax:

Select * from train where trainno between 123400 and 123450;

Output:

9. Change the super fast charge value in train fare as zero, if it is null.

Syntax:

Update train_ticket_fare set superfast_charge=0 where superfast_charge is NULL;

Output:

10. List the passenger names whose tickets are not confirmed.

Syntax:

Select name from passenger where reservation_status="pending";

Output:

11. List the base_fare of all AC coaches available in each train.

Synatx:

select BASE_FARE from Train_Ticket_fare where CLASS=”chair car”;

output:

12.find the ticket details where transaction id is not known.

Synatx:

select *from Ticket where Transactionid='NULL';

Output:

if there are no traansactions id with null data->

13. Find the train names that are from Chennai to Mumbai, but do not have the sourceor

destination in itsname.

Syntax: select name from Train where SOURCE='CHENNAI' AND

DESTINATION='MUMBAI' AND NAME!='*CHENNAI*MUMBAI*' AND

NAME!='*MUMBAI*CHENNAI*';

14. Find the train details that are on Thursday(Use the ADT column created)

Synatx:

Select * from train where days='thursday';

Output:

 :TASK 3:

Q.Create (Alter table to add constraint) the necessary foreign keys by identifying the

relationships in the table.

1) Add a suitable constraint to train table to always have train no in the range 10001 to

99999.

Syntax:

alter table Train ADD constraint trainno check(trainno BETWEEN 100001 AND 999999);

Output:

2) Add a suitable constraint for the column of station name, so that does not take

duplicates.

Syntax:

alter table Train_Route add constraint Train_Route_name_unique unique(name);

Output:

3) Change the data type of arrival time, depart time (date ->timestamp or timestamp to

date), and do the necessary process for updating the table with new values.

Syntax:

alter table Train drop column start_time;

alter table train drop column reach_time;

 alter table Train add start_time timestamp(0);

 alter table Train add reach_time timestamp(0);

update Train set start_time=timestamp('2022-08-15 18:40:00'),reach_time=timestamp('2022-

08-16 8:20:00') where trainno=123442;

update Train set start_time=timestamp('2022-08-11 18:40:00'),reach_time=timestamp('2022-

08-09 6:20:00') where trainno=123422;

update Train set start_time=timestamp('2022-08-16 18:50:00'),reach_time=timestamp('2022-

08-19 8:40:00') where trainno=123456;

Output:

4) Add a suitable constraint for the class column that it should take values only as 1A, 2A,

3A, SL, C.

Syntax:

alter table train add constraint chk_valCHECK(class in(‘1A’,‘2A’,‘3A’,‘SL’,‘C’));

Output:

5) Add a not null constraint for the column distance in train_route.

Syntax:

alter table Train_route change distance distance FLOAT NOT NULL;

Output:

 :TASK 4:

Q.Use SQL PLUS functions to.

1. Find the passengers whose date of journey is one month from today.

Syntax:

select date_of_journey from ticket where date_of_journey>date_add(now(),interval 30 day);

Output:

2. Print the train names in upper case.

Syntax:

select upper(name) from Train;

Output:

3. Print the passenger names with left padding character.

Syntax:

ELECT LPAD(Name,10,"***") AS LeftPadName From passenger;

Output:

4. Print the station codes replacing S with M.

Syntax:

select replace(station_code,'S','M') from Train_Route;

Output:

5. Translate all the LC in class column (Train_fare) to POT and display.

Syntax:

select translate(class,'LC','POT') from Train_ticket_fare;

Output:

6. Display the fare details of all trains, if any value is ZERO, print as NULL value.

Syntax:

SELECT NULLIF(base_fare, 0) AS base_fare FROM train_ticket_fare;

Output:

7. Display the pnrno and transaction id, if transaction id is null, print 'not generated'.

Synatx:

SELECT pnrno, IF(transactionid IS NULL,'not generated') AS "transactionid" from ticket.

Output:

8. Print the date_of_jounrney in the format '27th November 2010'.

Syntax:
SELECT pnrno,DATE_FORMAT(date_of_journey,'%D %M %Y') as date_of_journey from

ticket;

Output:

9. Find the maximum fare (total fare)

Syntax:

select max(TOTAL_TICKET_FARE) from ticket;

Output:

10. Find the average age of passengers in one ticket.

Syntax:

select avg(age) from Passenger;

Output:

11.Find the maximum length of station name available in the database.

Syntax:

select max(length(name)) from Train_route;

Output:

12. Print the fare amount of the passengers as rounded value.

Syntax:

select round(total_ticket_fare) from ticket;

Output:

13. Add the column halt time to train route.

Syntax:

alter table train_route add halt_time time;

Output:

14. Update values to it from arrival time and depart time.

Syntax:

update train_route set halt_time=depart_time-arrival_time;

15. Display the arrival time, depart time in the format HH:MI (24 hours and minutes).

Syntax:

select arrival_time,depart_time from Train_route;

output:

TASK-5

QueryingAggregateFunctions(COUNT,SUM,AVG,MAXandMIN)

Aim: ToPracticeQueriesusingAggregatefunctionsforthefollowing

1. WriteaQuerytodisplaytheinformationpresentinthepassengerandcancellationtabl
es

2. Displaythenumberofdaysinaweekon whichtheAP123busisavailable

3. FindnumberofticketsbookedforeachPNR_NousingGROUPBYCLAUSE

4. FindthedistinctPNRNumbersthatarepresent.

1. WriteaQuerytodisplaytheinformationpresentinthepassengerand cancellationtables

MYSQL>CREATETABLECANCELLATION2(PNRNOINTPRIMARYKEY,JOURNEYDATEDATETIME,N

OOFSEATS INT,ADDRESS VARCHAR(20),CONTACTNO INT,STATUS

VARCHAR(10),FOREIGNKEY(PNRNO)REFERENCESRESERVATION2(PNRNO));

mysql> INSERT INTO CANCELLATION2 VALUES(10201,'2012-

02-2010:20:25',2,'HYD',9654235242,'CONFIRM');

mysql> INSERT INTO CANCELLATION2 VALUES(10202,'2012-

02-2210:22:25',2,'HYD',9654232451,'CONFIRM');

mysql> INSERT INTO CANCELLATION2 VALUES(10203,'2012-

03-2210:30:25',2,'DELHI',9654587960,'CONFIRM');

MySQL>SELECT*

FROMRESERVATIONUNIONSELECT*

FROMCANCELLATION;

2. Displaythe MinimumageofthePassenger

MySQL>SELECTMIN(AGE)asMINAGE FROMPASSENGER;

3. FindnumberofticketsbookedforeachPNR_NousingGROUP BYCLAUSE

MySQL>SELECTPNRNO,SUM(No_of_SEATS)ASSUM_OF_SEATSFRO

MRESERVATION2 GROUPBY PNRNO;

4 Findthe distinct PNRNumbersthat arepresent.

MySQL>SELECTDISTINCTPNR_NOFROM RESERVATION2;

TASK–6

Querying (using ANY, ALL, IN, Exists, NOT EXISTS, UNION, INTERSECT, Constraints

etc.)Aim: PracticethefollowingQueries:

1. DisplayuniquePNR_NOofallpassengers

2. Displayallthenamesofmalepassengers.

3. Displaytheticketnumbersandnames of allthepassengers.

4. Findtheticketnumbersofthepassengerswhosenamestart with‘r’and endswith‘h’.

5. FindthenamesofPassengerswhoseageisbetween30and45.

6. Displayall the passengersnamesbeginningwith‘A’.

7. DisplaythesortedlistofPassengersnames

mysql>insertintopassenger2values(82302,'Smith',23,'M','Hyderabad');Q

ueryOK, 1rowaffected (0.02sec)

mysql> insert into passenger2

values(82303,'Neha',23,'F','Hyderabad');QueryOK, 1rowaffected

(0.01sec)

mysql>insertintopassenger2values(82304,'Neha',35,'F','Hyderabad');Que

ryOK, 1rowaffected (0.03sec)

mysql>insertintopassenger2values(82306,'Ramu',40,'M','Hyderabad');Q

ueryOK, 1rowaffected (0.02sec)

mysql>insertintopassenger2values(82308,'Aakash',40,'M','Hyderabad');

QueryOK, 1rowaffected (0.02sec)

mysql>insertintopassenger2values(82402,'Aravind',42,'M','Hyderabad');

QueryOK, 1rowaffected (0.02sec)

mysql>insertintopassenger2values(82403,'Avinash',42,'M','Hyderabad');

QueryOK, 1rowaffected (0.02sec)

mysql>insertintopassenger2values(82502,'Ramesh',23,'M','Hyderabad');

QueryOK, 1rowaffected (0.02sec)

mysql>insertintopassenger2values(82602,'Rajesh',23,'M','Hyderabad');Q

ueryOK, 1rowaffected (0.02sec)

RESERVATION2

mysql>insertintoreservation2values(10201,'2012-02-

2010:20:25',05,'HYD',9654235242);QueryOK, 1rowaffected (0.03 sec)

mysql>insertintoreservation2values(10202,'2012-02-

2210:22:25',05,'HYD',9654232451);QueryOK, 1rowaffected (0.02 sec)

mysql> insert into reservation2 values(10203,'2012-03-22 10:30:25',05,'DELHI',96

54587960);QueryOK, 1rowaffected (0.01 sec)

mysql>insertintoreservation2values(10204,'2013-03-

2211:30:25',05,'CHENNAI',9845761254);QueryOK, 1rowaffected (0.02 sec)

1. DisplayuniquePNR_NOofallreservationMysql>Select

DISTINCTPNR_NO fromReservation;

PNR_No

10201

10202

10203

10204

2. Displayallthe namesofmalepassengers.

mysql>Selectp.namefrompassenger2p

where

 p.passportidIN(selectp2.passportidfrompassenger2p2
where p2.sex='M');

3. Displaytheticketnumbersandnamesofallthepassengers.

mysql>selectt.ticketno,p.namefrompassengertickett,passenger2pwheret.passportid=p.passportid;

4. Findtheticketnumbersofthe passengerswhosenamestartwith‘r’andendswith‘h’.

MySQL>SELECTNameFROMPassengerWHEREnameLIKE‘R%H’

Name

Rajesh

Ramesh

Ramesh

5. Findthe namesofPassengerswhoseageisbetween30 and45.

MySQL>SELECTNameFROMPASSENGERWHEREAGEBETWEEN30AND45

6. Displayallthepassengersnamesbeginningwith‘A’.

MySQL>SELECT*FROMPASSENGERWHERENAME LIKE‘A%’;

Name

Akash

Arivind

Avinash

7. DisplaythesortedlistofPassengersnames

MySQL>SELECTNAMEFROMPASSENGERORDERBYNAME;

TASK 7:

Create a table EMP with the following structure.

COLUMN Name DATA Type

--

EMPNO INTEGER(6)

ENAME VARCHAR2(20)

JOB VARCHAR2(10)

MGR INTEGER (4)

DEPTNO INTEGER (3)

SAL INTEGER (7)

1.

Creating Table Emp:

Inserting the values into the table:

Create dept table with the following structure.

COLUMN Name DATA Type

--

DEPTNO INTEGER (2)

DNAME VARCHAR2(10)

LOC VARCHAR2(10)

 DEPTNO as the primary key

2.

Creating Table Dept:

Inserting the values into the table:

Queries:

5. Display all the employees and the departments implementing a left outer join.

6. Display the employee name and department name in which they are working implementing a full outer join.

// MySQL does not support full outer join out of the box, unlike other databases.

SELECT emame,dname FROM emp

LEFT JOIN dept ON emp.deptno = dept.deptno

UNION ALL

SELECT ename,dname FROM emp

RIGHT JOIN dept ON emp.deptno = dept.deptno

WHERE emp.deptno IS NULL;

7. Find the third highest salary of an employee.

8. Display all employee names and salary whose salary is greater than minimum salary of the company and job title
starts with ‘M’.

Insert the Manger record and display the details:

 5. Write a query to display information about employees who earn more than any employee in dept 30.

Inserting more values:

Query:

6. Write a query to create and drop View

To create a view:

To drop a view:

TASK 8:

8.Write a simple PL/SQL block to.

1. Print the factorial of a given number.

Queries:

DELIMITER //

CREATE PROCEDURE fact(IN x INT)

BEGIN

DECLARE result INT;

DECLARE i INT;

ET result = 1;

SET i = 1;

WHILE i <= x DO

SET result = result * i;

SET i = i + 1;

END WHILE;

SELECT x AS Number, result as Factorial;

END //

Output:

2. Print the Fibonacci series.

Queries:

DELIMITER //

CREATE PROCEDURE nonrec_fib(n INT,OUT out_fib INT)

BEGIN

DECLARE m INT default 0;

DECLARE k INT DEFAULT 1;

DECLARE i INT;

DECLARE tmp INT;

SET m=0;

SET k=1;

SET i=1;

WHILE (i<=n) DO

SET tmp=m+k;

SET m=k;

SET k=tmp;

SET i=i+1;

END WHILE;

SET out_fib=m;

END //

OUTPUT:

TASK 9:

9. Write a cursor for the following: Declare a cursor that defines a result set. Open the

cursor to establish the result set. Fetch the data into local variables as needed from the

cursor, one row at a time. Close the cursor when done.

Example 1:

Queries:

CREATE TABLE Sailors(sid INT, sname VARCHAR(20), rating INT, age FLOAT,

PRIMARY KEY(sid));

INSERT INTO Sailors VALUES(22,'Dustin',7,45);

INSERT INTO Sailors VALUES(29,'Brutus',1,33);

INSERT INTO Sailors VALUES(31,'Lubber',8,56);

 INSERT INTO Sailors VALUES(32,'Andy',8,26);

 INSERT INTO Sailors VALUES(58,'Rusty',10,35);

INSERT INTO Sailors VALUES(74,'Horatio',9,35);

INSERT INTO Sailors VALUES(64,'Horatio',7,35);

INSERT INTO Sailors VALUES(95,'Bob',3,64);

INSERT INTO Sailors VALUES(85,'Art',3,26);

INSERT INTO Sailors VALUES(71,'Zorba',10,16);

DELIMITER //

create procedure mycur1(sa_id int)

 begin

declare v_sname varchar(30);

declare v_rating int;

declare v_age int;

declare c1 cursor for select sname, rating, age from sailors where sid = sa_id;

open c1;

fetch c1 into v_sname,v_rating,v_age;

select v_sname,v_rating,v_age;

close c1;

end //

OUTPUT:

Example 2

Queries:

DELIMITER //

create procedure mycur2(sa_rating int)

 begin

declare v_sname varchar(30);

declare v_sid int;

declare v_age int;

declare c1 cursor for select sid,sname,age from sailors where rating=sa_rating;

open c1;

fetch c1 into v_sid,v_sname,v_age;

select v_sid,v_sname,v_age;

close c1;

end //

OUTPUT:

Example 3

Queries:

DELIMITER //

create procedure mycur3(sa_rating int)

begin

declare finished int default 0;

declare count int default 0;

declare v_sname varchar(30);

declare v_sid int;

declare v_age int;

declare c1 cursor for select sid,sname,age from sailors where rating=sa_rating;

declare continue handler for not found set finished=1;

open c1; getcur : loop fetch c1 into v_sid,v_sname,v_age;

if finished=1 then leave getcur; end if;

set count =count + 1;

select v_sid,v_sname,v_age;

end loop;

close c1;

select count;

 end //

OUTPUT:

TASK 10:

10. Write a PL/SQL procedure to: Creation of stored procedure, Execution of

procedure and modification of procedure.

Queries:

CREATE TABLE Sailors(sid INT, sname VARCHAR(20), rating INT, age FLOAT,

PRIMARY KEY(sid));

INSERT INTO Sailors VALUES(22,'Dustin',7,45);

INSERT INTO Sailors VALUES(29,'Brutus',1,33);

INSERT INTO Sailors VALUES(31,'Lubber',8,56);

 INSERT INTO Sailors VALUES(32,'Andy',8,26);

 INSERT INTO Sailors VALUES(58,'Rusty',10,35);

INSERT INTO Sailors VALUES(74,'Horatio',9,35);

INSERT INTO Sailors VALUES(64,'Horatio',7,35);

INSERT INTO Sailors VALUES(95,'Bob',3,64);

INSERT INTO Sailors VALUES(85,'Art',3,26);

INSERT INTO Sailors VALUES(71,'Zorba',10,16);

DELIMITER //

create procedure p1(p_age int)

begin

SELECT S.rating, S.age

FROM Sailors S

WHERE S.age >= p_age;

End

call p1(30) //

OUTPUT:

TASK 11:

11. Write a Trigger for the following:

Creation of insert trigger, delete trigger, update trigger.

Update Trigger:

Queries:

CREATE TABLE Boats(bid INT, bname VARCHAR(10), color VARCHAR(10),

PRIMARY KEY(bid));

DESC Boats;

INSERT INTO Boats VALUES(101,'Interlake','blue');

INSERT INTO Boats VALUES(102,'Interlake','red');

INSERT INTO Boats VALUES(103,'Clipper','green');

INSERT INTO Boats VALUES(104,'Marine','red');

DELIMITER //

create trigger t1 before update on boats

 for each row

begin

 if new.color='red' then

set new.color=old.color;

else

set new.color=new.color;

end if;

end//

OUTPUT:

Insert Trigger:

Queries:

CREATE TABLE Sailors(sid INT, sname VARCHAR(20), rating INT, age FLOAT,

PRIMARY KEY(sid));

INSERT INTO Sailors VALUES(22,'Dustin',7,45);

INSERT INTO Sailors VALUES(29,'Brutus',1,33);

INSERT INTO Sailors VALUES(31,'Lubber',8,56);

 INSERT INTO Sailors VALUES(32,'Andy',8,26);

 INSERT INTO Sailors VALUES(58,'Rusty',10,35);

INSERT INTO Sailors VALUES(74,'Horatio',9,35);

INSERT INTO Sailors VALUES(64,'Horatio',7,35);

INSERT INTO Sailors VALUES(95,'Bob',3,64);

INSERT INTO Sailors VALUES(85,'Art',3,26);

INSERT INTO Sailors VALUES(71,'Zorba',10,16);

DELIMITER //

create trigger t2

before insert on sailors

for each row

begin

if new.age>40 then

set new.rating='10';

else

set new.rating=new.rating;

end if;

end //

OUTPUT:

Delete Trigger:

Queries:

CREATE TABLE Reserves(sid INT, bid INT, day DATE NOT NULL, PRIMARY

KEY(sid,bid), FOREIGN KEY(sid) REFERENCES Sailors(sid) ON DELETE CASCADE,

FOREIGN KEY(bid) REFERENCES Boats(bid) ON DELETE CASCADE);

DESC Reserves;

INSERT INTO Reserves VALUES(22,101,'2012/10/10');

INSERT INTO Reserves VALUES(22,102,'2012/10/9');

INSERT INTO Reserves VALUES(22,103,'2012/08/10');

INSERT INTO Reserves VALUES(22,104,'2012/07/10');

INSERT INTO Reserves VALUES(31,102,'2012/11/10');

INSERT INTO Reserves VALUES(31,103,'2012/06/11');

INSERT INTO Reserves VALUES(31,104,'2012/12/11');

INSERT INTO Reserves VALUES(64,101,'2012/05/09');

INSERT INTO Reserves VALUES(64,102,'2012/08/09');

INSERT INTO Reserves VALUES(74,103,'2012/08/09');

DELIMITER //

create trigger t3 before delete on reserves

for each row

begin

insert into cancel values(old.sid, old.bid, old.day);

end //

OUTPUT:

TASK 12:

12. Use TCL commands for your transactions.

1.commit

2.rollback

3.savepoint

Queries:

CREATE TABLE Sailors(sid INT, sname VARCHAR(20), rating INT, age FLOAT,

PRIMARY KEY(sid));

INSERT INTO Sailors VALUES(22,'Dustin',7,45);

INSERT INTO Sailors VALUES(29,'Brutus',1,33);

INSERT INTO Sailors VALUES(31,'Lubber',8,56);

 INSERT INTO Sailors VALUES(32,'Andy',8,26);

 INSERT INTO Sailors VALUES(58,'Rusty',10,35);

INSERT INTO Sailors VALUES(74,'Horatio',9,35);

INSERT INTO Sailors VALUES(64,'Horatio',7,35);

INSERT INTO Sailors VALUES(95,'Bob',3,64);

INSERT INTO Sailors VALUES(85,'Art',3,26);

INSERT INTO Sailors VALUES(71,'Zorba',10,16);

SELECT *FROM sailors;

START TRANSACTION;

COMMIT;

SET autocommit = 0;

SAVEPOINT Insertion;

UPDATE sailors SET rating= 10 WHERE age = 35;

SAVEPOINT Updation;

ROLLBACK TO Insertion;

SELECT *FROM sailors;

OUTPUT:

